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ABSTRACT

To first order in the deviation from scale invariance the inflationary potential

and its first two derivatives can be expressed in terms of the spectral indices

of the scalar and tensor perturbations, n and nT, and their contributions to

the variance of the quadrupole CBR temperature anisotropy, S and T. In ad-
{6 " • ,,

dition, there is a consistency relation between these quantities: nT -- 1 T
7S"

We derive the second-order expressions for the inflationary potential and its

first two derivatives and the first-order expression for its third derivative, in

terms of n, nT, S, T, and dn/dln A. We also obtain the second-order con-

1T 0.11T 0.15(n 1)]. As an example wesistency relation, nT = --_[1 + + --

consider the exponential potential, the only known case where exact analytic

solutions for the perturbation spectra exist. We reconstruct the potential via

Taylor expansion (with coefficients calculated at both first and second order),
and introduce the Pad_ approximant as a greatly improved alternative.
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1 Introduction

In inflationary models quantum fluctuations excited on very small length

scales (_ Hff I _ i0-23cm ) are stretched to astrophysical scales (_ I025cm)

by the tremendous growth of the scale factor during inflation (H± is the

value of Hubble parameter during inflation) [I]. This results in almost scale-

invariant spectra of scalar (density) [2] and tensor (gravitational-wave) [3]

metric perturbations. Together with the prediction of a spatially-fiat Uni-

verse they provide the means for testing the inflationary paradigm. The ten-

sor fluctuations lead to cosmic background radiation (CBR) anisotropy and

a stochastic background of gravitational waves with wavelengths from about

I km to over 104 Mpc. The scalar fluctuations also lead to CBR anisotropy
and seed the formation of structure in the Universe.

The amplitudes and spectral indices of the metric fluctuations can be ex-

pressed in terms of the inflationary potential and its derivatives, evaluated

at the value of the scalar field when astrophysically interesting scales crossed

outside the horizon during inflation (from galactic scales to the presently ob-

servable Universe, corresponding to the eight e-foldings about 50 e-folds or

so before the end of inflation). Techniques have been developed for relating
the scalar and tensor spectra to the potential and its derivatives in an ex-

pansion whose small parameter is the deviation from scale invariance [4]. In

particular, to first order in the deviation from scale invariance the spectral

indices and the power spectra of the fluctuations today can be written as [5]i

raP,40
n = 1 - x_---9-°+ _, nT -- ,

87r 4_r 81r

P(k) = Ak_]T(k)] 2, PT(k) = ATknT-3[TT(k)[ 2 (3jx(kTo) _
\ ]

(i)

2

, (2)

A = 75H° 4 l+_nT+- +in2+ 7 (n-i) 4 2, (3)
mplx50

-- 3_" I + - +lIi2 +7 nT m_-----_l. (4)

iSeveral minor errors in Ref. [5] have been corrected here: the factors of H3 +n in
Eqs. (A5, A7) should be//4; the factor of 1.1(n-1) in Eq. (A8) is more precisely 1.3(n-1);
the factor of 1.2nT in Eq. (A14) is more precisely 1.4nT.



Here k is the comoving wavenumber, x = mp1V'//V measures the steepness

of the potential, prime denotes derivative with respect to the scalar field that

drives inflation, subscript 50 indicates that the quantity is to be evaluated

50 e-folds before the end of inflation, 2 rap1 : 1.22 × 1019 GeV is the Planck

mass, H0 is the present value of the Hubble constant, To --- 2Ho 1 is the

present conformal age of the Universe, and 7 -_ 0.577 is Euler's constant.

Scale-invariant metric perturbations correspond to (n - 1) = nT -_ O. The

functions T(k) and TT(k) are the transfer functions for scalar [7] and tensor [8]

metric perturbations respectively; for k_-0 << 100, both T(k) and TT(k) _ 1.

From these expressions the consequences of the scalar and tensor metric

fluctuations may be computed. In particular, the contributions to the vari-

ance of the angular power spectrum of the CBR anisotropy on large angular
scales (1 << 200) that arise predominantly due to the Sac]as-Wolfe effect are
given by [8]

(l f l - Ho
-_ _ k-2P(k)lJl(k_'o)l 2dk, (5)

(,aTm[2) __ 36,x2FII+3 ) o_- 1) AT fO kr"'r+l[F_(k) 121TT(k)12dk, (6)
\

where TLSS _ 7"0/(1 + ZLSS)I/2 _ T0/35 is the conformal age at last scattering

(ZLSS --_ 1100) and jz is the spherical Bessel function of order 1. (We note

in passing that both expressions are based upon the approximation that the

Universe is matter-dominated at last-scattering; the small contribution of

radiation, about 10%-20%, leads to corrections that are of the same order [8]
and would have to be included in a more accurate treatment when the data

so demand.)

2The point about which the potential is expanded is in principle arbitrary. However,

the spectral indices n and nT can only plausibly be measured on scales from 1Mpc-
104Mpc and S and T depend upon perturbations on these same scales, so it makes sense

to choose the expansion point to correspond to when these scales crossed outside the

horizon during inflation; in addition, by taking khoTo = 1 several expressions simplify.
The precise number of e-folds before the end of inflation when these scales crossed outside

the horizon depends logarithmically upon the energy scale of inflation and the reheat

temperature, see Refs. [4, 6]; for the sake of definiteness we take this number to be 50,
which can easily be changed to the correct value for a given inflationary model.



The contribution of scalar and tensor metric perturbations to the variance

of the quadrupole CBR anisotropy can be computed numerically [5]

s _= (I LI2>
4_r -_ 2.211 + 1.2nT+O.OS(n-- 1)] V_°(k_°_-°)i-n4 2 , (7)

mplx50

T - __ 0.61[1+ i.4 T]
4_T m4 , (8)

where the dependence upon (n - 1) and nT is given to first-order. In eval-

uating these expressions the effect of transfer functions is negligible as the

integrals are dominated by k_-0 _ 2. For simplicity, following footnote 2

we henceforth omit factors of (ksoT0) i-_ and (ksoT0)-_T; they are easily re-
inserted if needed.

1.1 First-order reconstruction

Since S, T, n, and nT are expressed in terms of the potential and its first two

derivatives, one can invert the expressions to solve for the potential and its

first two derivatives in terms of S, T, n, and nT plus a "consistency relation."
Those expressions are [9]

V_o/m4_ = 1.65(1- 1.4nT)T,

= 1"65(1+0"20T) T, (9)

Vs_o/m3_ = _8.3 --_'L-_TT,

4-8"3_ -I_--TT, (10)
_7S

0/,np_ = 21[(n- 1)- 3nT]T,

= 21 [(n - 1) + 0.43T] T, (11)

1T

n_ - 7 S" (i2)

In the second expressions for the potential and its first two derivatives we
T

have used the consistency relation to express nT in terms of T, as y should
be easier to measure [10]. Note that the sign of V' cannot be determined as

it can be changed by a field redefinition ¢ --, -¢, though a specific choice

here determines the signs of various later expressions.
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This procedureactually generatesthe full second-orderterm for Vs0, while

the other expressions are first-order. Our nomenclature and the overall re-

construction strategy are explained and clarified below.

1.2 The perturbative reconstruction strategy

Before delving into the algebra of the more complicated second-order expres-

sions, let us orient the reader with an overview of the perturbative recon-

struction process [6, 9]. The goal of the process is to express the inflationary

potential and its derivatives, V_ ) for 1 = 0, 1, 2,..., in an expansion whose

terms are powers of observables, T, T dn/dln)_, and so on. The_', %, 7_T,

choice of the set of observables is of course not unique. From these, the po-

tential can be reconstructed over some finite interval via a series expansion.

While one can hope to learn about the potential over the interval that affects

astrophysical scales, it is probably not realistic to hope to learn much about

the potential globally without some additional a priori knowledge (e.g., the
functional form of the potential). 3

The formal expansion parameter is the deviation from exact scale invari-

ance, which can be expressed as (n - 1); the other observables we shall use

~ CO[(n- 1)], and dn/dlnA ~are: nT '_ O[(n- 1)], _ O[(n- 1)2]. (In
T

the scale-invariant limit, V(¢) =const, and n = 1, nT = 0, _ = 0, and

dn/dlnA = 0.) The expression for V_ ) begins at order (n- 1)_/2T, with

higher-order terms (n - 1)k+_/2T, ]_ = 1, 2, 3,.... The expressions for higher

derivatives of the potential are not only of higher order in (n - 1), but also

involve more observables. For example, to lowest order the expression for

V_0 only involves T; that for V_'0 involves T and T. ,,_, that for V_0 involves T,

_- and (n- 1) and, as we shall see, that for "50 _, -s, , _z,,, involves T, T (n 1),

and dn/dln A. (We have not included nT in any of the lists, assuming ira-

plicitly that it is expressed in terms of the other observables by means of a

consistency relation, as we now discuss.) Likewise, the expression for a given

derivative involves additional observables as one goes to higher and higher
order.

3The one possible exception involves the accurate measurement of the stochastic

background of gravitational waves on scales from 1 km to 3000 Mpc (corresponding to

N _ 0 - 50) in which case the inflationary potential could be mapped out directly since
the amplitude of the tensor perturbation on a given scale is related to the value of the
potential.
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As a matter of nomenclature,we shall refer to the lowest-orderterm for
any Vs(_) or for the consistency relation as "first-order," the next as "second-

order," and so on. The four expressions from Ref. [9] given above are respec-

tively the second-order expression for Vs0, the first-order expressions for V5_0
and V_'_, and the first-order consistency relation. In the next Section we shall

use second-order results from Ref. [II] to derive the second-order expressions
for E'50, Vs'_ and the consistency relation, as well as the first-order expression

for v,,, Both the second-order expression for Vs'_ and the first-order ex-50 •

pression for Vs_' involve the derivative of the scalar spectral index, dn/dln A,

which is likely to be very difficult to measure. Higher-order expressions for

the potential and its first three derivatives, as well as the fourth derivative,

will involve yet another even less accessible observable, and thus there is little

motivation at present for proceeding further in the perturbative expansion.

An important feature of reconstruction is that the problem is overdeter-

mined; specifically, a set of M _> 3 observables can be expressed in terms

of the potential and its first M - 2 derivatives. This implies a "consistency

relation," which, for increasing M, contains terms of higher and higher order.
IT

The lowest-order consistency equation, nr - 7 s, has been much discussed

(e.g., in Ref. [4]) and arises through Eqs. (1), (7) and (8) which express nT,
S, and T in terms of Vs0 and Vs_0.

Calculating higher derivatives alone, while keeping the calculation of each

derivative to lowest order, does not lead to the correct second-order term in

the consistency equation, and nor does calculating the second-order correc-

tions to the derivatives present. One must systematically do both. The

second-order version of the consistency equation is obtained by calculating

the potential, its derivative and Eq. (1) to a higher order. Adding an extra

order to the calculation of Vs'o adds a new observable, (n - 1), which will

appear in the consistency equation at second order. To account for there

being still only a single consistency equation, there must be a new equation,

and because (n- 1) has only entered at second-order in V_'0, we only need the

first-order equation for Vs'_. The second-order consistency equation, which

we calculate in this paper, therefore relates nr, _ and (n - 1), with the last

only appearing as a second-order correction. Were one to desire a calculation

to yet higher order, the same pattern would persist; each existing derivative

must be calculated to one extra order and the next derivative to lowest or-

der, introducing a new observable. This will generate next-order terms in

the consistency equation with the new observable appearing at that order.



However,this presentlycannot bedoneasthird-order expressionsfor Vb0 and
Vb'0 have not been calculated.

2 Second-order Reconstruction Reduced to

Practice

The reconstruction equations for the scalar potential and its first two deriva-

tives, evaluated to second-order, are given in Ref. [II], though not in terms

of cosmological observables. They are given in terms of the perturbation

amplitudes A 2 and A_. Very roughly, As is the horizon-crossing amplitude

of the density perturbation on a given scale and AG is the horizon-crossing

amplitude of the tensor perturbation (in the Appendix we provide some re-

lations between notation used in that paper and this one.) Our purpose here

is to express these second-order expressions for the potential and its first two

derivatives in terms of the measurable quantities n, dn/dln A, nT, S, and T.

The amplitudes A_ and A_ are related to the observables S, T, nT and
n by:

A_ = 0.70(1 - 1.3nT)T, A_ = 9.611 - 1.15(n - 1)]S, (13)

where the (n - 1) and nT dependencies have been found by evaluating the

Sachs-Wolfe integrals numerically. Both expressions are accurate to second-
order.

Before deriving second-order expressions for the potential and its deriva-

tives, we calculate the second-order version of the consistency relation. It is

obtained from Eq. (2.9) of Ref. [11],

nT _ A___ [1 + 3e- 2_7] (14)
2 A_

where to the required order the slow-roll parameters e and _/(defined in the
Appendix) are given by

c = --nT/2, U = (n -- 1)/2 -- nT.

This gives a simple and very useful relation for At�As,2 2

A_ - --0.bUT [1 -- 0.bUT + 1.0(n 1)].

(15)

(16)
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Substituting into Eq. (13), we find the second-order consistency relation

1T [1--0.SnT+O.15(n-- 1)] (17)nT -- 7 S

or
T

-_ = --7nT [1 + 0.8nT -- 0.15(n -- 1)].

To the required order we can use the first-order truncation nT --

the brackets, thereby obtaining an alternative form,

nT-- 75' 1+0.11_+0.15(n-1) , (19)

where nT is given in terms of the more accessible quantities (n - 1) and T

Independent measurements of n, nT and T provide a powerful test of the

inflationary hypothesis; in the space of these parameters inflationary models

must lie on the surface defined by Eq. (18). In Figure 1 we illustrate the

inflationary surface both without and with second-order corrections. The

second-order corrections break the degeneracy in the (n- 1) direction, as

well as typically reducing T viewed as a function of nT and (n- 1). However,

the portions of the surface that feature large corrections are not favored

by present cosmological data, and further, are susceptible to higher-order

corrections. (Indeed, well away from scale invariance the surface would be

noticeably different even just using Eq. (19) instead of Eq. (18), which differ
by third-order terms.)

Obtaining the reconstruction equations is simply a matter of substituting

into Eqs. (3.4), (3.6) and (3.15) of Ref. [11] for V, V' and Y" respectively.

We give two alternative forms for each, the first using nT and the second

T for nT using the second-order consistency equation. They aresubstituting

_o/m41 = 1.65(1- 1.4nT)T,

: 1.65(1 + 0.20S) T , (20)
I 3

Vs0/mp1 = ±8.3--X/Z-_T [1- 1.1nT--O.O3(n-- 1)]T,

4-8 f1_[1 0.21T 0.04(n-1)] T, (21)= + s -

0/rap1 = 21 (n - 1) - 3nT -+- 1.4n_

(is)

1 T inside
7s

7
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These expressions are accurate to second-order. Naturally, they agree with
the first-order expressions given earlier.

Though no expression is given in Ref. [11] for V"', by using the lowest-

order expressions for c, 7, and a third slow-roll parameter (, and Eq. (3.13)

which relates the three to dn/dln A, one can obtain the first-order expression,

r dn/dlnA q
+104--X/-Z-_T

L TtT J

[ dnldlnA ]
: +104_ -1_ -T 7 + 0.9 --T + 4(n- 1) T. (23)

V7s TIS S

where the overall sign is to be the same as that of W. The second-order term

would require yet another observable. As remarked in Ref. [11], even this

first-order expression features the rate of change of the scalar spectral index,

which is likely to be very difficult to measure. Realistically then, in the near

term only the value of the potential and its first two derivatives are likely to
be accessible to accurate determination.

The final step in reconstructing the potential is to use d¢/dN, N being

the number of e-foldings, to find the range of ¢ that corresponds to the eight

or so e-foldings of inflation relevant for astrophysics. In effect, this introduces

an additional small parameter, L, = (50 - N)/50 < 8//50, where N __ 42 is

the number of e-folds before the end of inflation when the smallest scale

of interest crossed outside the horizon. The smallness of this parameter is

essential if the approximation of the spectra by power-laws is to be valid.

To proceed, we may simply carry out a Taylor expansion of ¢ about ¢50,
to whatever order we believe is appropriate,

aivd¢I¢_o 2(N 50)2 d2¢dN2
- + - +...CN-- = (N

¢50
(24)



We can easily substitute for thesederivatives,using as a starting point the
exact formula

-
4_r (25)

which, along with dN/dt = -H, yields the relation from which the Taylor
coefficients may be calculated,

d¢ m2_ H'

dN- 47c H" (26)

To get a given coefficient in the Taylor expansion for CN, one simply
calculates di¢/dN _ expanding to the desired order in the deviation from scale

invariance. 4 For example, taking only the first term in the ¢N expansion and
working to first-order one obtains

j mpl

¢N -- ¢50 -- m-_V--nT (N - 50), (27)

where again the overall sign is the same as that of V'. Next, we give the first

coefficient in the ¢g expansion to second-order and the second coefficient in

the ¢g expansion to first-order only,

Up I /------

¢N--¢50 = :I=-_V--nT [l+0.1nT+0.1(n--1)](N_50)

j rap1 7-----

-¢--_V--nT [(n-- 1)- nT] (N- 50) 2 +...,

with both signs again agreeing with that of V'.

(2s)

3 Techniques and an Example

Before going on to specifics, let us again consider perturbative reconstruction

from the larger perspective. In constructing the Taylor series for the value of

4Note this procedure differs slightly from that in Ref.. [9], where d¢/dN was expanded

linearly about ¢50 and ¢N was solved for exactly, cf. Eq. (8). This results in an exponential,
whose expansion picks up the (N-50) and (N-50) 2 terms correctly to lowest order in the

deviation from scale invariance, though not the higher-order terms in the (N - 50) term
which would require higher-order terms in the expansion of d¢/dN. There is an overall
sign error in Eq. (8) of Ref. [9].
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the potential at a given point the/-th term is given by V_)(¢ - ¢50)_//!. As

mentioned earlier V_ ) starts at order (n - 1)t/2T; from Eq. (28) we see that

(¢ - ¢50) _ is of order (n - 1)t/2AN_, where AN= N - 50 is around eight for

the region of the potential corresponding to astrophysically accessible scales.

Thus, the/-th term in the Taylor expansion to lowest order is

y_)(¢- ¢50)_/1!~ co[(_- 1)_Z_N_T] + .... (29)

In order that the series be clearly convergent, the deviation from scale in-

variant (n- 1) should be less than about AN -1 _ 0.1. In the case that

(n- 1)AN _ C9(1), as in our example below, Eq. (29) suggests that the

expression for each derivative be expanded to the same order in the devia-

tion from scale invariance. On the other hand, if (n - 1) << 0.1, then clearly

the higher-derivative terms in the Taylor expansion are less important, and

a sound case could be made for expanding the lower derivatives of the po-

tential to higher order in (n - 1). However, because of the existence of two

expansion parameters, AN and (n- 1), that are a priori unrelated, in the

general case there is no clear prescription. In our example below, where

(n - 1)AN _ (9(1), we will explore several possibilities.

3.1 Expansion techniques

Given the value of the potential and its first two or three derivatives at a

point and the Cg relation just obtained, one can reconstruct the potential

on the observationally relevant scales (i.e., N __ 42 - 50). The standard

technique used previously is the Taylor expansion

, 1 V," "v(¢) = y_0+ y_0(¢- ¢50)+ _ 50(¢- ¢5o)2+'.. (3o)

For many situations this is perfectly fine (e.g., when _tT and n - 1 are small,

see Ref. [9]). However, if the range of eight or so e-foldings corresponds to a

large range in ¢ the convergence may not be very good because of the abrupt

truncation of the Taylor series. Specifically, for large (¢ - ¢50) the shape of

the reconstructed potential is dictated, rightly or wrongly, by the last term

in the expansion (quadratic or cubic).

An often used alternative is the Pad_ approximant [12], which can be

generated directly from a truncated power series. For a power series that

i0



extendsto order N, the Pad_ approximants are quotients of two polynomi-

als of order L (numerator) and M (denominator) denoted by [L, M], where

L + M = N. By construction, the expansion of [L, M] matches that of the

power series to order N, but of course is not truncated. Very often, Pad_ ap-

proximants provide a very good approximation over a wider range of values

than the Taylor series from which they are derived; they in some way encode

better estimates of the higher-order terms than does truncation. If we trun-

cate the Taylor series at the second derivative, then the associated diagonal

Pad_ approximant [1, 1] is a ratio of two first-order polynomials given by 5

with

R(¢) - a0+ a1¢
1 + b1¢' (31)

a0 = V_0; bl " ' = - V_ T,,,/_,1, (32)=-Y_0/2Y/0; a_ Y_'0 50vs0/_vs0.

As we shall now illustrate by specific example, Pad6 approximants have a lot

to offer when the Taylor series proves a poor approximation.

3.2 Reconstructing an exponential potential

A useful testing ground for reconstruction is the exponential potential, the

only known case where the perturbation spectra can be derived exactly an-
alytically [13]. For the potential

the scale factor grows exactly as tp. Compared with the lowest order expres-

sions, the amplitudes A and AT, or A_ and A_, are both multiplied by the
same p-dependent factor R2(p), where

R(p) = 2_/(p-I)F[3/2 + 1/(p- 1)]
r[3/2] (1- 1/pF/(_-_) , (34)

5The [2, 0] approximant is just the truncated Taylor series; in addition to simplicity,
there is some motivation for using the diagonal approximant rather than the [0, 2] ap-
proximant as it is asymptotically constant, consistent with the flatness of inflationary
potentials.

11



where F(...) is the usual gamma function. Both scalar and tensor spectra
are exact power laws with spectral indices (n - I) = nT = --2/(p- I). The
scalar-field solution is characterized by

I p mpl de rap1¢= -_t dN 4v/4v/_; V((_N) = vtrue_' --- "50 exp[2(N-50)/p]. (35)

The expressions for T and S can be obtained exactly by integrating Eqs. (5,6),

Vst0rue
S = 2.2f(n)R2(P)_4_.2 , (36)

,,oPl_50

Vst0rue

T = 0.61g(nT)R2(p) m4, ' (37)

where the numerical factors f(n) = 1 + 1.15(n- 1) +... and g(nT) = 1 +

1.3nT +... arise from the n, nv dependence of the Sachs-Wolfe integrals, cf.
 qs. (5, 6).

We are now ready to carry out an array of reconstruction methods. Be-

cause we are using exact expressions to generate the spectra, this procedure

is more ambitious, and more realistic, than those attempted thus far [6, 9],

where the trial spectra were produced using the slow-roll approximation. For

the general inflationary potential, exact results are not known, and so this

procedure is not possible. However, our method here should give a more

realistic estimate of inherent errors even in the general case.

There are two distinct types of error. The first is error in the value of the

potential at ¢50, due to third-order and higher terms. By substituting the

expression for T in Eq. (37) into Eq. (9) or (20) for Vs0 we can compute that
error:

V5 /T/'true

o/vso = g(nT)(1 -- 1.4nT)R(p)2° (38)

The second error involves the shape of the potential, which depends on the

ability of the chosen expansion to match the potential over the eight inter-
esting e-foldings.

We have chosen as a specific, example an exponential potential with p =

43/3. We did so because this leads to about the largest departure from scale

invariance that can still be regarded as observationally viable, (n- 1) =

nT : --0.15 and T __ I, and thus realistically represents the most challenging

example of reconstruction. The exact potential is shown in Fig. 2 along with
the results of five different reconstructions.

12



To begin, considerthe error in estimating V5t0rue; g(nT = --0.15) = 0.824

and so V_0/V_t0rue __ 0.95, a modest 5% due to the neglected higher-order

terms. As we always include the second-order term in V_0, the error is the

same in every method we look at. Had the first-order expression for V_0 been

used instead, corresponding to the neglect of the factor of (1 - 1.4nT) in
Eq. (9), then the undere.stimation would have been about 20%.

Let us now consider the shape, which we note depends on T and S only

through their ratio. The important distinction between different methods is

the difference in required input data; methods needing only n and T have
the advantage of depending only on the information that is easiest to obtain.

Requiring dn/dln A in addition, while offering more accuracy, is setting a
much trickier observational task.

As a starting point, let us take the equations derived in Ref. [9], which
are primarily first-order though they include the second-order correction to

V_0, cf. Eqs. (9-11). In this extreme example, the quadratic Taylor series

based upon this does a bad job of approximating the shape of the potential,

as it turns upward for large (¢ - ¢50) due to the truncation at the (¢ - ¢50) 2
term (see Fig. 2).

If we now require knowledge of dn/dln A, the Taylor series approach can

be improved in two ways. We can now take V_0, V_0, and V_ to second-

order; however, the improvement is rather minimal. Alternatively, we can

stick to first-order expressions, but include the V_ ' cubic term. Again the

improvement is modest, though at least the unwanted minimum has been

eliminated. One could go further and take V_0, V_0, and V_ to second-

order and V_"o' to lowest order, which we haven't illustrated, again seeing
only modest gains for the increased observational requirement.

The Taylor series having been unimpressive, let us progress in a different
direction. With only n and T_, as an alternative to the Taylor series one can

construct the Pad_ approximant based upon it, taking V_0 to second-order

and V_o and V_ to first-order. This represents a substantial gain on the Tay-

lor series to that order without requiring any additional input information.

With this minimal information, it is a much better method. Reintroducing

dn/dln _ allows this method to be extended to second-order, where the re-

production of the shape of the potential is excellent. To include the third

derivative term would necessitate a more complicated (non-diagonal) Pad_
approximant, which doesn't seem warranted at the moment.

What is the upshot of this comparison? Recalling that we have chosen

13
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an example with extreme deviation from scale-invariance, the second-order

corrections are reassuringly small and only improve the shape of the recon-

structed potential slightly. The addition of the third derivative term in the

Taylor series gives a slightly more significant improvement, but at the price
of its dependence upon dn/dln A even at lowest order. The most remarkable

improvement involves the use of Pad_ approximants. Even without knowl-

edge of dn/dln I the shape of the potential is reproduced far better than

with the higher-order Taylor series which does require that knowledge. As

noted previously, the improvement results from the fact that the Pad_ ap-

proximant is not truncated; further, even in situations where truncation of

the Taylor series does not lead to problems, the Pad_ approximant still proves

valuable as its Taylor expansion coincides with that of the original expan-

sion. We therefore conclude that Pad_ approximants provide a significant

improvement in the perturbative reconstruction of the inflationary potential.

4 Discussion

By presenting the second-order reconstruction equations directly in terms

of observables, we have been able to assemble and to compare an array of

different perturbative reconstruction techniques based upon cosmological ob-

servables. Our work extends previous work in several important ways.

The most interesting result is the introduction of the Pad_ approximant

as an alternative to the Taylor series in perturbative reconstruction. It can

be obtained from a Taylor series regardless of the order (in the deviation

from scale invariance) to which the coefficients of the Taylor series has been

obtained. In our worked example, the improvement in reproducing the shape

of the potential as compared to the Taylor series is striking, especially con-

sidering that no extra observables are required.

We have shown that the second-order corrections to the Taylor series

coefficients are generally small, and that those for Vs0 and V_t0 only depend

upon the same quantities as the first-order expressions (S, T, and n). The

corrections to _'_ however require a new observable such as dn/dlnA, and

by deriving for the first time an explicit expression we have confirmed that

even the lowest-order term in Vs'_' requires this challenging observable.

Finally, one of the most important aspects of reconstruction is that it

is overdetermined: Any set of cosmological observables supplies degenerate

14



information regarding the potential and its derivatives, thereby providing
an important consistencycheck. In particular, the tensor spectral index
can be expressedto second-orderin terms of S, T, and n by the relation:

nT -- _[IIT __ 0.ii T + 0.15(n - i)]. In cases that are observationally viable,
the second-order corrections are small.
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Appendix: Some Relations between Notation

For the convenience of the reader, we summarise here some relations between

the notation used here and that in Ref. [II], from which several important

results were taken. In that paper, the spectra As and AG were defined so

as to include any scale-dependence within them, i.e., they are functions of k.

In the perturbative reconstruction regime, where for most results the spectra

can be approximated by power laws, these are related at lowest-order to the

amplitudes A and AT in this paper, which are just numbers, by

A(k/kso) '_-1- 27r2 A_(k), (39)

AT(k/kso) nT = 2A_(k). (40)

In making the connection, note that 8w __ 25. For the higher-order terms,

the scalar field kinetic energy must be accounted for in translating between

H and V, which means these relations break down at higher order.

In Ref. [11], slow-roll parameters e and _1are introduced,

4_r , r]- 4_r H' (41)
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which are again in general k-dependent. As indicated in Section 2 of the

present paper, they can be related to the spectral indices to various orders,

and _] being of the same order in perturbation theory as (n - i) and nT.

To lowest-order they are constant, corresponding to power-law spectra. At

lowest-order e = 16_-x 2, but once more higher order corrections break this
relation.
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Figure Captions

Figure 1: The consistency plane for inflation in n - nT -- g space, the flat

surface being the lowest-order result and the curved one incorporating the

second-order corrections, given by Eq. (18).

Figure 2: An array of different reconstructions of an exponential potential

with (n- 1) = nr = -0.15 (p = 43/3). The longer dotted Iine indicates

the exact potential. The three different line styles correspond to three differ-

ent reconstruction strategies; solid is Taylor series truncated at (¢ - ¢20) 2,

dashed is Taylor series truncated at (¢ - ¢20) 3 and dash-dotted is the Pad_

approximant based on the former of these. The upper line of a given style

uses coefficients to first-order in the deviation from scale invariance (save V_0,

which is always second-order), while the lower, where plotted, is second-order

in all coefficients. The length of the curves corresponds to eight e-foldings.
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